qubrabenchΒΆ

  • qubrabench package
    • Subpackages
      • qubrabench.algorithms package
        • Submodules
        • qubrabench.algorithms.amplitude module
        • qubrabench.algorithms.linalg module
        • qubrabench.algorithms.max module
        • qubrabench.algorithms.search module
        • Module contents
      • qubrabench.datastructures package
        • Submodules
        • qubrabench.datastructures.qlist module
        • qubrabench.datastructures.qndarray module
        • Module contents
      • qubrabench.utils package
        • Submodules
        • qubrabench.utils.plotting module
        • Module contents
    • Submodules
    • qubrabench.benchmark module
      • BenchmarkError
      • BlockEncoding
        • BlockEncoding.access()
        • BlockEncoding.costs
        • BlockEncoding.matrix
        • BlockEncoding.precision
        • BlockEncoding.subnormalization_factor
        • BlockEncoding.uses
      • QObject
        • QObject.stats
      • QueryStats
        • QueryStats.classical_actual_queries
        • QueryStats.classical_expected_queries
        • QueryStats.quantum_expected_classical_queries
        • QueryStats.quantum_expected_quantum_queries
        • QueryStats.quantum_worst_case_classical_queries
        • QueryStats.quantum_worst_case_quantum_queries
        • QueryStats.quantum_worst_case_total_queries
        • QueryStats.record_query()
      • default_tracker()
      • oracle()
      • quantum_subroutine()
      • track_queries()
    • Module contents
      • array()
      • estimate_amplitude()
      • max()
      • oracle()
      • search()
      • track_queries()

Logo

qubrabench

A framework to benchmark the advantage of quantum algorithms.

Navigation

  • qubrabench
    • qubrabench package
  • Development Guide
  • License

  • GitHub
  • Issue Tracker

Quick search

©2023, QuBRA Benchmarking Project. | Powered by Sphinx 7.0.1 & Alabaster 0.7.16 | Page source
Fork me on GitHub